Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(6)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35326379

RESUMO

Bone-marrow-derived mast cells are matured from bone marrow cells in medium containing 20% fetal calf serum (FCS), interleukin (IL)-3 and stem-cell factor (SCF) and are used as in vitro models to study mast cells (MC) and their role in health and disease. In vivo, however, BM-derived hematopoietic stem cells account for only a fraction of MC; the majority of MC in vivo are and remain tissue resident. In this study we established a side-by-side culture with BMMC, fetal skin MC (FSMC) or fetal liver MC (FLMC) for comparative studies to identify the best surrogates for mature connective tissue MC (CTMC). All three MC types showed comparable morphology by histology and MC phenotype by flow cytometry. Heterogeneity was detected in the transcriptome with the most differentially expressed genes in FSMC compared to BMMC being Hdc and Tpsb2. Expression of ST2 was highly expressed in BMMC and FSMC and reduced in FLMC, diminishing their secretion of type 2 cytokines. Higher granule content, stronger response to FcεRI activation and significantly higher release of histamine from FSMC compared to FLMC and BMMC indicated differences in MC development in vitro dependent on the tissue of origin. Thus, tissues of origin imprint MC precursor cells to acquire distinct phenotypes and signatures despite identical culture conditions. Fetal-derived MC resemble mature CTMC, with FSMC being the most developed.


Assuntos
Células do Tecido Conjuntivo , Mastócitos , Células Cultivadas , Tecido Conjuntivo , Feto , Mastócitos/metabolismo
2.
Oxid Med Cell Longev ; 2016: 8026702, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26839633

RESUMO

Messenger RNA data of lymphohematopoietic cancer lines suggest a correlation between expression of the cation channel TRPM2 and the antiapoptotic protein Bcl-2. The latter is overexpressed in various tumor entities and mediates therapy resistance. Here, we analyzed the crosstalk between Bcl-2 and TRPM2 channels in T cell leukemia cells during oxidative stress as conferred by ionizing radiation (IR). To this end, the effects of TRPM2 inhibition or knock-down on plasma membrane currents, Ca(2+) signaling, mitochondrial superoxide anion formation, and cell cycle progression were compared between irradiated (0-10 Gy) Bcl-2-overexpressing and empty vector-transfected Jurkat cells. As a result, IR stimulated a TRPM2-mediated Ca(2+)-entry, which was higher in Bcl-2-overexpressing than in control cells and which contributed to IR-induced G2/M cell cycle arrest. TRPM2 inhibition induced a release from G2/M arrest resulting in cell death. Collectively, this data suggests a pivotal function of TRPM2 in the DNA damage response of T cell leukemia cells. Apoptosis-resistant Bcl-2-overexpressing cells even can afford higher TRPM2 activity without risking a hazardous Ca(2+)-overload-induced mitochondrial superoxide anion formation.


Assuntos
Pontos de Checagem do Ciclo Celular , Leucemia de Células T/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Canais de Cátion TRPM/metabolismo , Apoptose , Cálcio/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Regulação Leucêmica da Expressão Gênica , Humanos , Células Jurkat , Mitocôndrias/metabolismo , Estresse Oxidativo , Técnicas de Patch-Clamp , Radiação Ionizante , Transdução de Sinais , Superóxidos/química
3.
Cell Physiol Biochem ; 36(6): 2287-98, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26279433

RESUMO

BACKGROUND/AIMS: Janus kinase 3 (JAK3), a tyrosine kinase mainly expressed in hematopoietic cells, participates in the signaling stimulating cell proliferation. The kinase is expressed in dendritic cells (DCs), antigen presenting cells involved in the initiation and regulation of antigen-specific T-cell responses. Dendritic cell function is regulated by cytosolic Ca(2+) activity ([Ca(2+)]i). Mediators increasing [Ca(2+)]i in DCs include ATP and the chemokine receptor CXCR4 ligand CXCL12. The present study explored, whether JAK3 participates in the regulation of [Ca(2+)]i in DCs. METHODS: Fura-2 fluorescence was employed to determine [Ca(2+)]i, and whole cell patch clamp to decipher electrogenic transport in immature DCs isolated from bone marrow of JAK3-knockout (jak3(-/-)) or wild-type mice (jak3(+/+)). RESULTS: Without treatment, [Ca(2+)]i was similar in jak3(-/-) and jak3(+/+) DCs. Addition of ATP (100 µM) was followed by transient increase of [Ca(2+)]i reflecting Ca(2+) release from intracellular stores, an effect significantly less pronounced in jak3(-/-) DCs than in jak3(+/+) DCs. CXCL12 administration was followed by a sustained increase of [Ca(2+)]i reflecting receptor operated Ca(2+) entry, an effect significantly less rapid in jak3(-/-) DCs than in jak3(+/+) DCs. In addition, the Ca(2+) release-activated Ca(2+) channel (CRAC) current triggered by IP3-induced Ca(2+) store depletion and CXCL12 was significantly higher in DCs from jak3(+/+) mice than in jak3(-/-) mice. Inhibition of sarcoendoplasmatic reticulum Ca(2+)-ATPase (SERCA) by thapsigargin (1 µM) in the absence of extracellular Ca(2+) was followed by a transient increase of [Ca(2+)]i reflecting Ca(2+) release from intracellular stores, and subsequent readdition of extracellular Ca(2+) in the continued presence of thapsigargin was followed by a sustained increase of [Ca(2+)]i reflecting store operated Ca(2+) entry (SOCE). Both, Ca(2+) release from intracellular stores and SOCE were again significantly lower in jak3(-/-) DCs than in jak3(+/+) DCs. Pretreatment of jak3(+/+) DCs with JAK inhibitor WHI-P154 (22 µM, 10 minutes or 24 hours) significantly blunted both thapsigargin induced Ca(2+) release and subsequent SOCE. Abrupt replacement of Na(+) containing (130 mM) and Ca(2+) free (0 mM) extracellular bath by Na(+) free (0 mM) and Ca(2+) containing (2 mM) extracellular bath increased [Ca(2+)]i reflecting Na(+)/Ca(2+) exchanger activity, an effect again significantly less pronounced in jak3(-/-) DCs than in jak3(+/+) DCs. CONCLUSIONS: JAK3 deficiency is followed by down-regulation of cytosolic Ca(2+) release, receptor and store operated Ca(2+) entry and Na(+)/Ca(2+) exchanger activity in DCs.


Assuntos
Cálcio/metabolismo , Células Dendríticas/metabolismo , Janus Quinase 3/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Quimiocina CXCL12/farmacologia , Células Dendríticas/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Janus Quinase 3/deficiência , Masculino , Camundongos , Quinazolinas/farmacologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tapsigargina/farmacologia
4.
Kidney Blood Press Res ; 40(4): 335-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26160150

RESUMO

BACKGROUND/AIMS: The WNK-dependent STE20/SPS1-related proline/alanine-rich kinase SPAK participates in the regulation of NaCl and Na(+),K(+),2Cl(-) cotransport and thus renal salt excretion. The present study explored whether SPAK has similarly the potential to regulate the epithelial Na(+) channel (ENaC). METHODS: ENaC was expressed in Xenopus oocytes with or without additional expression of wild type SPAK, constitutively active (T233E)SPAK, WNK insensitive (T233A)SPAK or catalytically inactive (D212A)SPAK, and ENaC activity estimated from amiloride (50 µM) sensitive current (Iamil) in dual electrode voltage clamp experiments. Moreover, Ussing chamber was employed to determine Iamil in colonic tissue from wild type mice (spak(wt/wt)) and from gene targeted mice carrying WNK insensitive SPAK (spak(tg/tg)). RESULTS: Iamil was observed in ENaC-expressing oocytes, but not in water-injected oocytes. In ENaC expressing oocytes Iamil was significantly increased following coexpression of wild-type SPAK and (T233E)SPAK, but not following coexpression of (T233A)SPAK or (D212A)SPAK. Colonic Iamil was significantly higher in spak(wt/wt) than in spak(tg/tg) mice. CONCLUSION: SPAK has the potential to up-regulate ENaC.


Assuntos
Canais Epiteliais de Sódio/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Aldosterona/sangue , Amilorida/farmacologia , Animais , Colo/metabolismo , Diuréticos/farmacologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Canais Epiteliais de Sódio/genética , Feminino , Camundongos , Antígenos de Histocompatibilidade Menor , Ubiquitina-Proteína Ligases Nedd4 , Oócitos/metabolismo , Técnicas de Patch-Clamp , Proteínas Serina-Treonina Quinases/genética , Cloreto de Sódio/metabolismo , Cloreto de Sódio/urina , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima/fisiologia , Proteína Quinase 1 Deficiente de Lisina WNK , Xenopus laevis
5.
PLoS One ; 10(6): e0129365, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26046984

RESUMO

USP18 (Ubiquitin-like specific protease 18) is an enzyme cleaving ubiquitin from target proteins. USP18 plays a pivotal role in antiviral and antibacterial immune responses. On the other hand, ubiquitination participates in the regulation of several ion channels and transporters. USP18 sensitivity of transporters has, however, never been reported. The present study thus explored, whether USP18 modifies the activity of the peptide transporters PEPT1 and PEPT2, and whether the peptide transporters are sensitive to the ubiquitin ligase Nedd4-2. To this end, cRNA encoding PEPT1 or PEPT2 was injected into Xenopus laevis oocytes without or with additional injection of cRNA encoding USP18. Electrogenic peptide (glycine-glycine) transport was determined by dual electrode voltage clamp. As a result, in Xenopus laevis oocytes injected with cRNA encoding PEPT1 or PEPT2, but not in oocytes injected with water or with USP18 alone, application of the dipeptide gly-gly (2 mM) was followed by the appearance of an inward current (Igly-gly). Coexpression of USP18 significantly increased Igly-gly in both PEPT1 and PEPT2 expressing oocytes. Kinetic analysis revealed that coexpression of USP18 increased maximal Igly-gly. Conversely, overexpression of the ubiquitin ligase Nedd4-2 decreased Igly-gly. Coexpression of USP30 similarly increased Igly-gly in PEPT1 expressing oocytes. In conclusion, USP18 sensitive cellular functions include activity of the peptide transporters PEPT1 and PEPT2.


Assuntos
Dipeptídeos/metabolismo , Endopeptidases/metabolismo , Simportadores/metabolismo , Animais , Transporte Biológico , Dipeptídeos/farmacologia , Endopeptidases/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Feminino , Humanos , Injeções , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Medições Luminescentes/métodos , Potenciais da Membrana/efeitos dos fármacos , Ubiquitina-Proteína Ligases Nedd4 , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Oócitos/fisiologia , Técnicas de Patch-Clamp , Transportador 1 de Peptídeos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , RNA Complementar/administração & dosagem , RNA Complementar/genética , Coelhos , Simportadores/genética , Ubiquitina Tiolesterase , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Xenopus , Xenopus laevis
6.
Cell Physiol Biochem ; 36(2): 727-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26021261

RESUMO

BACKGROUND/AIMS: Janus kinase-3 (JAK3) is activated during energy depletion. Energy-consuming pumps include the Na(+)/K(+)-ATPase. The present study explored whether JAK3 regulates Na(+)/K(+)-ATPase in dendritic cells (DCs). METHODS: Ouabain (100 µM)-sensitive (Iouabain) and K(+)-induced (Ipump) outward currents were determined by utilizing whole cell patch-clamp, Na(+)/K(+)-ATPase α1-subunit mRNA levels by RT-PCR, Na(+)/K(+)-ATPase protein abundance by flow cytometry or immunofluorescence, and cellular ATP by luciferase-assay in DCs from bone marrow of JAK3-knockout (jak3(-/-)) or wild-type mice (jak3(+/+)). Ipump was further determined by voltage clamp in Xenopus oocytes expressing JAK3, active (A568V)JAK3 or inactive (K851A)JAK3. RESULTS: Na(+)/K(+)-ATPase α1-subunit mRNA and protein levels, as well as Ipump and Iouabain were significantly higher in jak3(-/-)DCs than in jak3(+/+)DCs. Energy depletion by 4h pre-treatment with 2,4-dinitro-phenol significantly decreased Ipump in jak3(+/+) DCs but not in jak3(-/-)DCs. Cellular ATP was significantly lower in jak3(-/-)DCs than in jak3(+/+)DCs and decreased in both genotypes by 2,4-dinitro-phenol, an effect significantly more pronounced in jak3(-/-)DCs than in jak3(+/+)DCs and strongly blunted by ouabain in both jak3(+/+) and jak3(-/-)DCs. Ipump and Iouabain in oocytes were decreased by expression of JAK3 and of (A568V)JAK3 but not of (K851A)JAK3. JAK3 inhibitor WHI-P154 (4-[(3'-bromo-4'-hydroxyphenyl)amino]-6,7-dimethoxyquinazoline, 22 µM) enhanced Ipump and Iouabain in JAK3 expressing oocytes. The difference between (A568V)JAK3 and (K851A)JAK3 expressing oocytes was virtually abrogated by actinomycin D (50 nM). CONCLUSIONS: JAK3 down-regulates Na(+)/K(+)-ATPase activity, an effect involving gene expression and profoundly curtailing ATP consumption.


Assuntos
Trifosfato de Adenosina/metabolismo , Janus Quinase 3/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , 2,4-Dinitrofenol/farmacologia , Animais , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Metabolismo Energético/efeitos dos fármacos , Feminino , Deleção de Genes , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/genética , Masculino , Camundongos , Mutação , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Quinazolinas/farmacologia , Xenopus
7.
Biochem Biophys Res Commun ; 461(1): 8-13, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25849886

RESUMO

TGFß is a powerful regulator of megakaryocyte maturation and platelet formation. As previously shown for other cell types, TGFß may up-regulate the expression of the serum & glucocorticoid inducible kinase SGK1, an effect requiring p38 kinase. SGK1 has in turn recently been shown to participate in the regulation of cytosolic Ca(2+) activity ([Ca(2+)]i) in megakaryocytes and platelets. SGK1 phosphorylates the IκB kinase (IKKα/ß), which in turn phosphorylates the inhibitor protein IκBα resulting in nuclear translocation of nuclear factor NFκB. Genes up-regulated by NFκB include Orai1, the pore forming ion channel subunit accomplishing store operated Ca(2+) entry (SOCE). The present study explored whether TGFß influences Ca(2+) signaling in megakaryocytes. [Ca(2+)]i was determined by Fura-2 fluorescence and SOCE from the increase of [Ca(2+)]i following re-addition of extracellular Ca(2+) after store depletion by removal of extracellular Ca(2+) and inhibition of the sarcoendoplasmatic Ca(2+) ATPase (SERCA) with thapsigargin (1 µM). As a result, TGFß (60 ng, 24 h) increased SOCE, an effect significantly blunted by p38 kinase inhibitor Skepinone-L (1 µM), SGK1 inhibitor EMD638683 (50 µM) and NFκB inhibitor wogonin (100 µM). In conclusion, TGFß is a powerful regulator of store operated Ca(2+) entry into megakaryocytes, an effect mediated by a signaling cascade involving p38 kinase, SGK1 and NFκB.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Megacariócitos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Megacariócitos/efeitos dos fármacos , Camundongos , Fator de Crescimento Transformador beta/farmacologia
8.
Biochem Biophys Res Commun ; 460(2): 177-82, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25767077

RESUMO

The active form of vitamin D, 1,25(OH)2D3, is a powerful regulator of cytosolic Ca(2+)-concentration ([Ca(2+)]i) in a variety of cell types. The formation of 1,25(OH)2D3 is inhibited by FGF23, an effect requiring presence of klotho. 1,25(OH)2D3 plasma levels are excessive in klotho-deficient mice (kl/kl). A previous study revealed that klotho-deficiency is followed by decreased activation of platelets, an effect at least in part due to blunted store operated Ca(2+) entry (SOCE). In other cell types 1,25(OH)2D3 has been shown to up-regulate the Na(+)/Ca(2+)-exchanger, which could, depending on cell membrane potential and cytosolic Na(+) concentration, either decrease or increase [Ca(2+)]i. The present study explored whether Na(+)/Ca(2+)-exchanger activity is different in megakaryocytes isolated from kl/kl mice than in megakaryocytes isolated from wild type mice. Na(+)/Ca(2+)-exchanger induced currents were determined by whole cell patch clamp and the Na(+)/Ca(2+)-exchanger induced alterations of [Ca(2+)]i by Fura-2 fluorescence. As a result, the inward current and the increase of [Ca(2+)]i following replacement of extracellular Na(+) by NMDG were higher in kl/kl megakaryocytes than in wild type megakaryocytes, a difference abrogated by treatment of the mice with low Vitamin D diet. Pretreatment of wild type megakaryocytes with 1,25(OH)2D3 (100 nM, 48 h) was followed by enhancement of both, inward current and increase of [Ca(2+)]i following replacement of extracellular Na(+) by NMDG. In conclusion, the present observations reveal a powerful stimulating effect of 1,25(OH)2D3 on Na(+)/Ca(2+)-exchanger activity in megakaryocytes.


Assuntos
Glucuronidase/fisiologia , Megacariócitos/fisiologia , Trocador de Sódio e Cálcio/fisiologia , Regulação para Cima/fisiologia , Animais , Cálcio/metabolismo , Feminino , Fator de Crescimento de Fibroblastos 23 , Glucuronidase/genética , Proteínas Klotho , Masculino , Megacariócitos/metabolismo , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp
9.
J Membr Biol ; 248(2): 309-17, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25644777

RESUMO

The janus-activated kinase 2 JAK2 participates in the signalling of several hormones including interferon, a powerful regulator of lymphocyte function. Lymphocyte activity and survival depend on the activity of the voltage-gated K(+) channel KCNA3 (Kv1.3). The present study thus explored whether JAK2 modifies the activity of voltage-gated K(+) channel KCNA3. To this end, cRNA encoding KCNA3 was injected in Xenopus oocytes with or without additional injection of cRNA encoding wild-type human JAK2, human inactive (K882E)JAK2 mutant, or human gain-of-function (V617F)JAK2 mutant. KCNA3-dependent depolarization-induced current was determined utilizing dual-electrode voltage clamp, and protein KCNA3 abundance in the cell membrane was quantified by chemiluminescence. Moreover, the effect of interferon-γ on voltage-gated K(+) current was determined by patch clamp in mainly KCNA3-expressing Jurkat T cells with or without prior treatment with JAK2 inhibitor AG490 (40 µM). As a result, KCNA3 channel activity and protein abundance were up-regulated by coexpression of JAK2 or (V617F)JAK2 but not (K882E)JAK2. The effect of JAK2 coexpression was reversed by AG490 treatment. In human Jurkat T lymphoma cells, voltage-gated K(+) current was up-regulated by interferon-γ and down-regulated by AG490 (40 µM). In conclusion, JAK2 participates in the signalling, regulating the voltage-gated K(+) channel KCNA3.


Assuntos
Janus Quinase 2/metabolismo , Canal de Potássio Kv1.3/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Expressão Gênica , Humanos , Janus Quinase 2/genética , Canal de Potássio Kv1.3/genética , Potenciais da Membrana , Camundongos , Mutação , Oócitos/metabolismo , Regulação para Cima , Xenopus
10.
FASEB J ; 29(5): 1701-10, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25609428

RESUMO

Gene variants of the leucine-rich repeat kinase 2 (LRRK2) are associated with susceptibility to Parkinson's disease (PD). Besides brain and periphery, LRRK2 is expressed in various immune cells including dendritic cells (DCs), antigen-presenting cells linking innate and adaptive immunity. However, the function of LRRK2 in the immune system is still incompletely understood. Here, Ca(2+)-signaling was analyzed in DCs isolated from gene-targeted mice lacking lrrk2 (Lrrk2(-/-)) and their wild-type littermates (Lrrk2(+/+)). According to Western blotting, Lrrk2 was expressed in Lrrk2(+/+) DCs but not in Lrrk2(-/-)DCs. Cytosolic Ca(2+) levels ([Ca(2+)]i) were determined utilizing Fura-2 fluorescence and whole cell currents to decipher electrogenic transport. The increase of [Ca(2+)]i following inhibition of sarcoendoplasmatic Ca(2+)-ATPase with thapsigargin (1 µM) in the absence of extracellular Ca(2+) (Ca(2+)-release) and the increase of [Ca(2+)]i following subsequent readdition of extracellular Ca(2+) (SOCE) were both significantly larger in Lrrk2(-/-) than in Lrrk2(+/+) DCs. The augmented increase of [Ca(2+)]i could have been due to impaired Ca(2+) extrusion by K(+)-independent (NCX) and/or K(+)-dependent (NCKX) Na(+)/Ca(2+)-exchanger activity, which was thus determined from the increase of [Ca(2+)]i, (Δ[Ca(2+)]i), and current following abrupt replacement of Na(+) containing (130 mM) and Ca(2+) free (0 mM) extracellular perfusate by Na(+) free (0 mM) and Ca(2+) containing (2 mM) extracellular perfusate. As a result, both slope and peak of Δ[Ca(2+)]i as well as Na(+)/Ca(2+) exchanger-induced current were significantly lower in Lrrk2(-/-) than in Lrrk2(+/+) DCs. A 6 or 24 hour treatment with the LRRK2 inhibitor GSK2578215A (1 µM) significantly decreased NCX1 and NCKX1 transcript levels, significantly blunted Na(+)/Ca(2+)-exchanger activity, and significantly augmented the increase of [Ca(2+)]i following Ca(2+)-release and SOCE. In conclusion, the present observations disclose a completely novel functional significance of LRRK2, i.e., the up-regulation of Na(+)/Ca(2+) exchanger transcription and activity leading to attenuation of Ca(2+)-signals in DCs.


Assuntos
Cálcio/metabolismo , Células Dendríticas/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Trocador de Sódio e Cálcio/metabolismo , Sódio/metabolismo , Animais , Células Apresentadoras de Antígenos , Western Blotting , Células Cultivadas , Células Dendríticas/citologia , Feminino , Citometria de Fluxo , Técnicas Imunoenzimáticas , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Masculino , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Espécies Reativas de Oxigênio
11.
Kidney Blood Press Res ; 39(6): 591-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25531100

RESUMO

BACKGROUND/AIMS: OSR1 (oxidative-stress-responsive kinase 1) participates in the regulation of renal tubular ion transport, cell volume and blood pressure. Whether OSR1 contributes to the regulation of organic solute transport remained; however, elusive. The present study thus explored the OSR1 sensitivity of the peptide transporters PEPT1 and PEPT2. METHODS: cRNA encoding PEPT1 or PEPT2 were injected into Xenopus oocytes without or with additional injection of cRNA encoding wild-type OSR1, WNK1 insensitive inactive (T185A)OSR1, constitutively active (T185E)OSR1, and catalytically inactive (D164A)OSR1. Electrogenic peptide (glycine-glycine) transport was determined by dual electrode voltage clamp, the abundance of hemagglutinin-tagged PEPT2 (PEPT2-HA) by chemiluminescence. RESULTS: In Xenopus oocytes injected with cRNA encoding PEPT1 or PEPT2, but not in oocytes injected with water, the dipeptide gly-gly (2 mM) generated an appreciable inward current (I(gly-gly)). Coexpression of OSR1 significantly decreased Igly-gly in both PEPT1 and PEPT2 expressing oocytes. The effect of OSR1 coexpression on Igly-gly in PEPT1 expressing oocytes was mimicked by coexpression of (T185E)OSR1, but not of (D164A)OSR1 or (T185A)OSR1. Kinetic analysis revealed that coexpression of OSR1 decreased maximal Igly-gly. OSR1 further decreased the PEPT2-HA protein abundance in the cell membrane. CONCLUSION: OSR1 has the capacity to downregulate the peptide transporters PEPT1 and PEPT2 by decreasing the carrier protein abundance in the cell membrane.


Assuntos
Proteínas Serina-Treonina Quinases/farmacologia , Simportadores/biossíntese , Animais , Membrana Celular/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Transportador 1 de Peptídeos , RNA/biossíntese , Simportadores/genética , Simportadores/metabolismo , Xenopus
12.
Kidney Blood Press Res ; 39(4): 388-98, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25376088

RESUMO

BACKGROUND/AIMS: SPAK (STE20-related proline/alanine-rich kinase) is a powerful regulator of renal tubular ion transport and blood pressure. Moreover, SPAK contributes to the regulation of cell volume. Little is known, however, about a role of SPAK in the regulation or organic solutes. The present study thus addressed the influence of SPAK on the peptide transporters PEPT1 and PEPT2. METHODS: To this end, cRNA encoding PEPT1 or PEPT2 were injected into Xenopus laevis oocytes without or with additional injection of cRNA encoding wild-type, SPAK, WNK1 insensitive inactive (T233A)SPAK, constitutively active (T233E)SPAK, and catalytically inactive (D212A)SPAK. Electrogenic peptide (glycine-glycine) transport was determined by dual electrode voltage clamp and PEPT2 protein abundance in the cell membrane by chemiluminescence. Intestinal electrogenic peptide transport was estimated from peptide induced current in Ussing chamber experiments of jejunal segments isolated from gene targeted mice expressing SPAK resistant to WNK-dependent activation (spak(tg/tg)) and respective wild-type mice (spak(+/+)). RESULTS: In PEPT1 and in PEPT2 expressing oocytes, but not in oocytes injected with water, the dipeptide gly-gly (2 mM) generated an inward current, which was significantly decreased following coexpression of SPAK. The effect of SPAK on PEPT1 was mimicked by (T233E)SPAK, but not by (D212A)SPAK or (T233A)SPAK. SPAK decreased maximal peptide induced current of PEPT1. Moreover, SPAK decreased carrier protein abundance in the cell membrane of PEPT2 expressing oocytes. In intestinal segments gly-gly generated a current, which was significantly higher in spak(tg/tg) than in spak(+/+) mice. CONCLUSION: SPAK is a powerful regulator of peptide transporters PEPT1 and PEPT2.


Assuntos
Proteínas Serina-Treonina Quinases/fisiologia , Simportadores/fisiologia , Animais , Dipeptídeos , Mucosa Intestinal/metabolismo , Luminescência , Camundongos , Camundongos Transgênicos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Transportador 1 de Peptídeos , Proteínas Serina-Treonina Quinases/genética , Coelhos , Simportadores/genética , Xenopus laevis
13.
Kidney Blood Press Res ; 39(4): 353-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25322850

RESUMO

BACKGROUND/AIMS: The kinases SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1) participate in the regulation of the NaCl cotransporter NCC and the Na+, K+, 2Cl- cotransporter NKCC2. The kinases are regulated by WNK (with-no-K[Lys]) kinases. Mutations of genes encoding WNK kinases underly Gordon's syndrome, a monogenic disease leading to hypertension and hyperkalemia. WNK kinases further regulate the renal outer medullary K+ channel ROMK1. The present study explored, whether SPAK and/or OSR1 have similarly the potential to modify the activity of ROMK1. METHODS: ROMK1 was expressed in Xenopus oocytes with or without additional expression of wild-type SPAK, constitutively active (T233E)SPAK, catalytically inactive (D212A)SPAK, wild-type OSR1, constitutively active (T185E)OSR1 and catalytically inactive (D164A)OSR1. Channel activity was determined utilizing dual electrode voltage clamp and ROMK1 protein abundance in the cell membrane utilizing chemiluminescence of ROMK1 containing an extracellular hemagglutinin epitope (ROMK1-HA). RESULTS: ROMK1 activity and ROMK1-HA protein abundance were significantly down-regulated by wild-type SPAK and (T233E)SPAK, but not by (D212A)SPAK. Similarly, ROMK1 activity and ROMK1-HA protein abundance were significantly down-regulated by wild-type OSR1 and (T185E)OSR1, but not by (D164A)OSR1. CONCLUSION: ROMK1 protein abundance and activity are down-regulated by SPAK and OSR1.


Assuntos
Medula Renal/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Camundongos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio/metabolismo , Xenopus laevis
14.
Kidney Blood Press Res ; 39(4): 378-87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25323061

RESUMO

BACKGROUND/AIMS: SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1) are powerful regulators of diverse transport processes. Both kinases are activated by cell shrinkage and participate in stimulation of regulatory cell volume increase (RVI). Execution of RVI involves inhibition of Cl- channels. The present study explored whether SPAK and/or OSR1 regulate the activity of the Cl- channel ClC-2. METHODS: To this end, ClC-2 was expressed in Xenopus laevis oocytes with or without additional expression of wild type SPAK, constitutively active SPAK(T233E), WNK1 insensitive inactive SPAK(T233A), catalytically inactive SPAK(D212A), wild type OSR1, constitutively active OSR1(T185E), WNK1 insensitive inactive OSR1(T185A), and catalytically inactive OSR1(D164A). Cl- channel activity was determined by dual electrode voltage clamp. RESULTS: Expression of ClC-2 was followed by the appearance of a conductance (GCl), which was significantly decreased following coexpression of wild-type SPAK, SPAK(T233E), wild type OSR1 or OSR1(T185E), but not by coexpression of SPAK(T233A), SPAK(D212A), OSR1(T185A), or OSR1(D164A). Inhibition of ClC-2 insertion by brefeldin A (5 µM) resulted in a decline of GCl which was similar in the absence and presence of SPAK or OSR1, suggesting that SPAK and OSR1 did not accelerate the retrieval of ClC-2 protein from the cell membrane. CONCLUSION: SPAK and OSR1 are powerful negative regulators of the cell volume regulatory Cl- channel ClC-2.


Assuntos
Canais de Cloreto/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Brefeldina A/farmacologia , Canais de Cloro CLC-2 , Membrana Celular/metabolismo , Canais de Cloreto/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Antígenos de Histocompatibilidade Menor , Oócitos/fisiologia , Técnicas de Patch-Clamp , Proteínas Serina-Treonina Quinases/genética , Inibidores da Síntese de Proteínas/farmacologia , Proteína Quinase 1 Deficiente de Lisina WNK , Xenopus laevis
15.
Cell Physiol Biochem ; 34(3): 943-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25200670

RESUMO

BACKGROUND/AIMS: Dendritic cells (DCs), antigen-presenting cells linking innate and adaptive immunity, are required for initiation of specific T cell-driven immune responses. Phosphoinositide-3-kinase (PI3K) suppresses proinflammatory cytokine production in DCs, which limits T helper (Th1) polarization. PI3K is in part effective by downregulation of transcription factor NF-κB. Downstream signaling elements of PI3K include serum- and glucocorticoid-inducible kinase 1 (SGK1) and its phosphorylation target N-myc downstream regulated gene 1 (NDRG1). The present study explored whether SGK1 and NDRG1 play a role in the regulation of NF-κB and DC-maturation. METHODS: DCs were isolated from bone marrow (BMDCs) or spleen of mice lacking functional SGK1 (sgk1(-/-)) and corresponding wild type mice (sgk1(+/+)). Protein abundance was determined by Western blotting. Transcription was inhibited by siRNA. Abundance of maturation markers was quantified by flow cytometry. FITC-dextran uptake was determined to quantify phagocytosis. RESULTS: NDRG1 was similarly expressed in sgk1(+/+) and sgk1(-/-)BMDCs, but SGK1-dependent phosphorylation of NDRG-1 was decreased in sgk1(-/-)BMDCs. Silencing of NDRG1 in sgk1(+/+)BMDCs as compared to control empty vector-treated BMDCs enhanced nuclear abundance of NF-κB subunit p65. Moreover, the abundance of phosphorylated NF-κB inhibitor IκBα, of phosphorylated IκB kinase (IKKα/ß) and of nuclear p65 were significantly higher in sgk1(-/-)BMDCs than in sgk1(+/+)BMDCs. Expression of maturation markers, MHC II, and CD86, was significantly larger and phagocytic capacity was significantly lower in sgk1(-/-) than in sgk1(+/+)BMDCs. Expression of CD86 and MHCII was also significantly higher in DCs isolated from the spleen of sgk1(-/-) mice than those from sgk1(+/+)mice. CONCLUSION: SGK1 and NDRG1 participate in the regulation of NF-κB signaling in and maturation of DCs.


Assuntos
Células Dendríticas/metabolismo , Proteínas Imediatamente Precoces/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Primers do DNA , Células Dendríticas/enzimologia , Células Dendríticas/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
16.
J Membr Biol ; 247(11): 1191-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25161031

RESUMO

The WNK-dependent STE20/SPS1-related proline/alanine-rich kinase SPAK is a powerful regulator of ion transport. The study explored whether SPAK similarly regulates nutrient transporters, such as the Na(+)-coupled glucose transporter SGLT1 (SLC5A1). To this end, SGLT1 was expressed in Xenopus oocytes with or without additional expression of wild-type SPAK, constitutively active (T233E)SPAK, WNK-insensitive (T233A)SPAK or catalytically inactive (D212A)SPAK, and electrogenic glucose transport determined by dual-electrode voltage-clamp experiments. Moreover, Ussing chamber was employed to determine the electrogenic glucose transport in intestine from wild-type mice (spak(wt/wt)) and from gene-targeted mice carrying WNK-insensitive SPAK (spak(tg/tg)). In SGLT1-expressing oocytes, but not in water-injected oocytes, the glucose-dependent current (I(g)) was significantly decreased following coexpression of wild-type SPAK and (T233E)SPAK, but not by coexpression of (T233A)SPAK or (D212A)SPAK. Kinetic analysis revealed that SPAK decreased maximal I(g) without significantly modifying the glucose concentration required for halfmaximal I(g) (K(m)). According to the chemiluminescence experiments, wild-type SPAK but not (D212A)SPAK decreased SGLT1 protein abundance in the cell membrane. Inhibition of SGLT1 insertion by brefeldin A (5 µM) resulted in a decline of I(g), which was similar in the absence and presence of SPAK, suggesting that SPAK did not accelerate the retrieval of SGLT1 protein from the cell membrane but rather down-regulated carrier insertion into the cell membrane. Intestinal electrogenic glucose transport was significantly lower in spak(wt/wt) than in spak(tg/tg) mice. In conclusion, SPAK is a powerful negative regulator of SGLT1 protein abundance in the cell membrane and thus of electrogenic glucose transport.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Mucosa Intestinal/metabolismo , Ativação do Canal Iônico/fisiologia , Oócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Transportador 1 de Glucose-Sódio/metabolismo , Animais , Células Cultivadas , Regulação para Baixo/fisiologia , Feminino , Glucose/metabolismo , Camundongos , Camundongos Knockout , Xenopus laevis
17.
Biochem Biophys Res Commun ; 452(3): 537-41, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25168590

RESUMO

The Na(+)/K(+) ATPase generates the Na(+) and K(+) concentration gradients across the plasma membrane and is thus essential for cellular electrolyte homeostasis, cell membrane potential and cell volume maintenance. A powerful regulator of Na(+)/K(+) ATPase is the serum- and glucocorticoid-inducible kinase 1 (SGK1). The most powerful known regulator of SGK1 expression is TGFß1, which is pivotal in the regulation of megakaryocyte maturation and platelet formation. Signaling involved in the upregulation of SGK1 by TGFß1 includes p38 mitogen activated protein (MAP) kinase. SGK1 in turn phosphorylates the IκB kinase (IKKα/ß), which phosphorylates the inhibitor protein IκBα thus triggering nuclear translocation of nuclear factor kappa B (NF-κB). The present study explored whether TGFß influences Na(+)/K(+) ATPase activity in megakaryocytes, and if so, whether the effect of TGß1 requires p38 MAP kinase, SGK1 and/or NF-κB. To this end, murine megakaryocytes were treated with TGFß1 and Na(+)/K(+) ATPase activity determined from K(+) induced current utilizing whole cell patch clamp. The pump current (Ipump) was determined in the absence and presence of Na(+)/K(+) ATPase inhibitor ouabain (100µM). TGFß1 (60ng/ml) was added in the absence or presence of p38 MAP kinase inhibitor skepinone-L (1µM), SGK1 inhibitor EMD638683 (50µM) or NF-κB inhibitor wogonin (50nM). As a result, the Ipump was significantly increased by pretreatment of the megakaryocytes with TGFß1, an effect reaching statistical significance within 16 and 24h and virtually abrogated in the presence of skepinone-L, EMD638683 or wogonin. In conclusion, TGFß1 is a powerful regulator of megakaryocytic Na(+)/K(+) ATPase activity. Signaling mediating the effect of TGFß1 on Na(+)/K(+) ATPase activity involves p38 MAP kinase, SGK1 and NF-κB.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Megacariócitos/efeitos dos fármacos , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Benzamidas/farmacologia , Dibenzocicloeptenos/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Flavanonas/farmacologia , Regulação da Expressão Gênica , Hidrazinas/farmacologia , Proteínas Imediatamente Precoces/antagonistas & inibidores , Proteínas Imediatamente Precoces/genética , Masculino , Megacariócitos/citologia , Megacariócitos/enzimologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Ouabaína/farmacologia , Técnicas de Patch-Clamp , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética
18.
Biochem Biophys Res Commun ; 450(4): 1396-401, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25010641

RESUMO

Parvovirus B19 (B19V) can cause inflammatory cardiomyopathy and endothelial dysfunction. Pathophysiological mechanisms involved include lysophosphatidylcholine producing phospholipase A2 (PLA2) activity of the B19V capsid protein VP1. Most recently, VP1 and lysophosphatidylcholine have been shown to inhibit Na(+)/K(+) ATPase. The present study explored whether VP1 modifies the activity of Kv1.3 and Kv1.5 K(+) channels. cRNA encoding Kv1.3 or Kv1.5 was injected into Xenopus oocytes without or with cRNA encoding VP1 isolated from a patient suffering from fatal B19V-induced myocarditis. K(+) channel activity was determined by dual electrode voltage clamp. Injection of cRNA encoding Kv1.3 or Kv1.5 into Xenopus oocytes was followed by appearance of Kv K(+) channel activity, which was significantly decreased by additional injection of cRNA encoding VP1, but not by additional injection of cRNA encoding PLA2-negative VP1 mutant (H153A). The effect of VP1 on Kv current was not significantly modified by transcription inhibitor actinomycin (10 µM for 36 h) but was mimicked by lysophosphatidylcholine (1 µg/ml). The B19V capsid protein VP1 inhibits host cell Kv channels, an effect at least partially due to phospholipase A2 (PLA) dependent formation of lysophosphatidylcholine.


Assuntos
Proteínas do Capsídeo/fisiologia , Regulação para Baixo , Parvovirus B19 Humano/metabolismo , Canais de Potássio/fisiologia , Animais , Humanos , Xenopus
19.
J Membr Biol ; 247(8): 713-20, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24928228

RESUMO

Janus kinase 3 (JAK3) contributes to cytokine receptor signaling, confers cell survival and stimulates cell proliferation. The gain of function mutation JAK3(A572V) is found in acute megakaryoplastic leukemia. Replacement of ATP coordinating lysine by alanine yields inactive JAK3(K855A). Most recent observations revealed the capacity of JAK3 to regulate ion transport. This study thus explored whether JAK3 regulates glutamate transporters EAAT1-4, carriers accomplishing transport of glutamate and aspartate in a variety of cells including intestinal cells, renal cells, glial cells, and neurons. To this end, EAAT1, 2, 3, or 4 were expressed in Xenopus oocytes with or without additional expression of mouse wild-type JAK3, constitutively active JAK3(A568V) or inactive JAK3(K851A), and electrogenic glutamate transport was determined by dual electrode voltage clamp. Moreover, Ussing chamber was employed to determine electrogenic glutamate transport in intestine from mice lacking functional JAK3 (jak3(-/-)) and from corresponding wild-type mice (jak3(+/+)). As a result, in EAAT1, 2, 3, or 4 expressing oocytes, but not in oocytes injected with water, addition of glutamate to extracellular bath generated an inward current (Ig), which was significantly increased following coexpression of JAK3. Ig in oocytes expressing EAAT3 was further increased by JAK3(A568V) but not by JAK3(K851A). Ig in EAAT3 + JAK3 expressing oocytes was significantly decreased by JAK3 inhibitor WHI-P154 (22 µM). Kinetic analysis revealed that JAK3 increased maximal Ig and significantly reduced the glutamate concentration required for half maximal Ig (Km). Intestinal electrogenic glutamate transport was significantly lower in jak3(-/-) than in jak3(+/+) mice. In conclusion, JAK3 is a powerful regulator of excitatory amino acid transporter isoforms.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Ácido Glutâmico/metabolismo , Janus Quinase 3/fisiologia , Oócitos/metabolismo , Transdução de Sinais , Animais , Proliferação de Células , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Regulação para Cima , Xenopus laevis
20.
Am J Physiol Cell Physiol ; 306(11): C1041-9, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24696148

RESUMO

The iberiotoxin-sensitive large conductance voltage- and Ca(2+)-activated potassium (BK) channels (maxi-K(+)-channels) hyperpolarize the cell membrane thus supporting Ca(2+) entry through Ca(2+)-release activated Ca(2+) channels. Janus kinase-2 (JAK2) has been identified as novel regulator of ion transport. To explore whether JAK2 participates in the regulation of BK channels, cRNA encoding Ca(2+)-insensitive BK channels (BK(M513I+Δ899-903)) was injected into Xenopus oocytes with or without cRNA encoding wild-type JAK2, gain-of-function (V617F)JAK2, or inactive (K882E)JAK2. K(+) conductance was determined by dual electrode voltage clamp and BK-channel protein abundance by confocal microscopy. In A204 alveolar rhabdomyosarcoma cells, iberiotoxin-sensitive K(+) current was determined utilizing whole cell patch clamp. A204 cells were further transfected with JAK2 and BK-channel transcript, and protein abundance was quantified by RT-PCR and Western blotting, respectively. As a result, the K(+) current in BK(M513I+Δ899-903)-expressing oocytes was significantly increased following coexpression of JAK2 or (V617F)JAK2 but not (K882E)JAK2. Coexpression of the BK channel with (V617F)JAK2 but not (K882E)JAK2 enhanced BK-channel protein abundance in the oocyte cell membrane. Exposure of BK-channel and (V617F)JAK2-expressing oocytes to the JAK2 inhibitor AG490 (40 µM) significantly decreased K(+) current. Inhibition of channel insertion by brefeldin A (5 µM) decreased the K(+) current to a similar extent in oocytes expressing the BK channel alone and in oocytes expressing the BK channel and (V617F)JAK2. The iberiotoxin (50 nM)-sensitive K(+) current in rhabdomyosarcoma cells was significantly decreased by AG490 pretreatment (40 µM, 12 h). Moreover, overexpression of JAK2 in A204 cells significantly enhanced BK channel mRNA and protein abundance. In conclusion, JAK2 upregulates BK channels by increasing channel protein abundance in the cell membrane.


Assuntos
Janus Quinase 2/biossíntese , Canais de Potássio Ativados por Cálcio de Condutância Alta/biossíntese , Regulação para Cima/fisiologia , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Feminino , Humanos , Camundongos , Canais de Potássio Cálcio-Ativados/biossíntese , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...